Навигация по сайту Моя кладовка

Режимы Mute и StandBy в микросхеме TDA7294 / TDA7293

 

 

Эти режимы позволяют отключать звук и переводить микросхему в "спящий" режим с пониженным энергопотреблением.

Рис.1. Структура микросхемы 7294

Если включен режим Mute, то входная цепь микросхемы отключается от вывода 3 (см. рис.1) и соединяется с землей (точнее с выводом 4, который должен быть заземлен). Сигнал на выход практически не поступает (по паспорту он ослабляется на 80 дБ = 10 000 раз). Применение - для временного глушения звука (как в телевизоре), и для устранения переходных процессов (щелчков) при включении-выключении.

Если включен режим StandBy, то микросхема переходит в "спящий" режим с пониженным энергопотреблением. При этом происходит следующее: включается режим Mute и кроме того, некоторые из транзисторов микросхемы (в том числе выходные) запираются и практически перестают потреблять ток от источника питания. По паспорту сигнал ослабляется на 90 дБ, а потребляемый микросхемой ток снижается до 1 мА. Применение этому режиму разное:

Во всех этих случаях имеется ввиду, что левый конец резистора на рис.2 подключается или к + питания (микросхема включена), или к земле (микросхема выключена).

Для управления этими режимами служат выводы 10 (Mute) и 9 (Stand-by). Если напряжение на соответствующем выводе меньше, чем +1,5 вольта относительно земли (на самом деле относительно вывода 1, соединенного с землей), то режим включен - микросхема молчит, или вообще отключена. Если напряжение больше +3,5 В, то режим отключен. То есть, микросхема работает, когда напряжение и на выводе 9 и на выводе 10 больше + 3,5 вольт. Такие уровни позволяют управлять усилителем от обычных цифровых микросхем.

Если нет необходимости управлять включением микросхемы или приглушением звука, то выводы рекомендуется использовать для устранения щелчка при включении. Самый простой способ показан на рис.2 - выводы объединяются и подключаются к источнику через резистор и конденсатор. Такое включение задает задержку подачи напряжения на выводы, и в результате микросхема включается на ~ 0,1 секунды после подачи питания и никаких щелчков не наблюдается. Конденсатор должен быть рассчитан на напряжение не меньшее, чем напряжение питания.

Рис.2. Простейший способ управления включением

Для маньяков бесшумного включения (и для наиболее качественного внешнего управления питанием) производитель рекомендует такую схему:

Рис.3. Способ управления включением, рекомендованный производителем

При подаче напряжения сначала микросхема включается с некоторой задержкой (выходит из режима Stand-by), но звука нет. После этого отключается режим Mute, и звук появляется. Выключение по идее идет в обратной последовательности - сначала Mute, после Stand-by. Это происходит из-за того, что при включении управления (подачи + ххх вольт) левый по схеме конденсатор заряжается через два резистора - медленнее, чем правый. А разряжается наоборот быстрее - через диод и один резистор 10 кОм. Диод может быть любой маломощный с допустимым обратным напряжением не менее напряжения питания. Конденсаторы также должны быть расчитаны на напряжение питания.

Только это не лучший способ управления в том случае, если все это хозяйство подключено к "плюсу" питания. Дело в том, что разряд конденсаторов цепей управления выключением происходит гораздо быстрее, чем разряд конденсаторов фильтра питания. Поэтому при включении питания все работает как и описано выше, а при отключении питания режимы Mute и StdBy включатся только тогда, когда напряжение, поступающее с блока питания на микросхему, опустится до ~2 вольт. То есть, когда и так уже все замолкло.

Поэтому все эти схемы хорошо работают только на включение, тем не менее, при выключении никаких щелчков и прочих неприятных звуков не слышно - это оттого, что у разработчиков получилась очень неплохая микросхема. Для правильного управления всеми этими режимами можно предложить такую схему (в ней диод должен быть рассчитан на напряжение питания, а конденсаторы на напряжение не менее 16 вольт; R1 должен быть не больше, чем указан на схеме):

Рис.4. Способ управления включением и выключением, максимально использующий возможности управления.

Эта схема работает очень хорошо, если есть какое-то внешнее управление (или управляющее напряжение, или переключатель, как показано на схеме), и неплохо, если никакого специального управления не требуется, а напряжение подается от источника питания (переключатель S1 при этом отсутствует, а цепь, которую он разрывал - замкнута).

Работает она так. При подаче напряжения питания (замыкании S1), конденсатор С1 заряжается через резистор R3 до напряжения, задаваемого делителем R1,R2 (которое примерно равно 5 вольт). А конденсатор С2 в свою очередь заряжается от С1, поэтому он заряжается несколько дольше. Включение производится в такой последовательности: сначала включены оба режима (и Mute, и StdBy). Потом отключается режим StdBy и "внутренности" микросхемы начинают работать как надо. Через некоторое время отключается режим Mute, и сигнал проходит на выход усилителя.

Выключение переключателем. При этом С2 очень быстро разряжается через диод и малое сопротивление R2, устанавливая тем самым режим Mute. Вскоре вслед за ним разряжается и С1 (для разрядного тока R3 и R4 включены параллельно, и разряд идет быстрее), отключая напрочь всю микросхему.

Если выключателя S1 нет, то все работает почти так же. При отключении сетевого напряжения, конденсаторы фильтра питания усилителя начинают разряжаться. Напряжение питания при этом падает. Как только напряжение на делителе R1,R2 станет уменьшаться, конденсатор С2 очень быстро разряжается через диод и устанавливает режим Mute. Чуть позже разряжается С1, включая StdBy. При этом напряжение питания довольно велико (оно делится делителем R1,R2) и до отключения микросхемы никаких нежелательных звуков не возникает (когда микросхема отключается, напряжение питания примерно 10-12 вольт).

Если честно, то цепь, показанная на рисунке 4, является чересчур хорошей - микросхема качественная, и при ее выключении и так никаких щелчков нет. Но если хотите максимальной уверенности, то эта схема для вас.

 

 

Счетчик